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Abstract

The Normal Quantile Transform (NQT) has been used in many hydrological and me-
teorological applications in order to make the Cumulated Density Function (CDF) of
the observed, simulated and forecast river discharge, water level or precipitation data
Gaussian. It is also the heart of the meta-Gaussian model for assessing the total5

predictive uncertainty of the Hydrological Uncertainty Processor (HUP) developed by
Krzysztofowicz. In the field of geo-statistics this transformation is better known as
Normal-Score Transform. In this paper some possible problems caused by small sam-
ple sizes for the applicability in flood forecasting systems will be discussed and illus-
trated by examples. For the practical implementation commands and examples from10

the freely available and widely used statistical computing language R (R Development
Core Team, 2011) will be given (represented in Courier font) and possible solutions
are suggested by combining extreme value analysis and non-parametric regression
methods.

1 Introduction15

The Normal Score Transform or NQT has been applied in various fields of geoscience
in order to make the mostly asymmetrical distributed real world observed variables
more treatable and to fulfil the basic underlying assumption of normality, which is in-
trinsic to most statistical models (e.g. Moran, 1970; Goovaerts, 1997; Deutsch and
Journel, 1998). The meta-Gaussian family of distribution functions (Kelly and Krzyszto-20

fowicz, 1997) allows the marginal distribution functions of the variates to take any form
and the dependence structure between any two variates to be monotone nonlinear
and heteroscedastic. This most convenient property has been incorporated into the
HUP (Krzysztofowicz and Kelly, 2000; Krzysztofowicz and Herr, 2001; Krzysztofowicz
and Maranzano, 2004), which is now part of several operational forecasting systems25

(e.g. Todini, 2008; Reggiani et al., 2009; Bogner and Pappenberger, 2011) in order to
estimate the predictive uncertainty of the hydrological forecasts.
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In Krzysztofowicz (1997) the theory behind the NQT is outlined and the practical
application is demonstrated e.g. in Montanari (2005); Seo et al. (2006). The main ob-
jective of this study is to show the difficulties occurring in the inversion of the empirical
NQT, if the normal random deviates lie outside the range of the historically observed
range.5

Following the work of Krzysztofowicz (1997) the empirical NQT involves the following
steps (in brackets the corresponding R commands):

1. Sorting the sample X from the smallest to the largest observation, x(1),...,x(n)
(x=sort(x) )

2. Estimating the cumulative probabilities p(i ),...,p(n) using a plotting position like10

i/(n+1) such that p(i ) = P (X ≤x(i )) (p=ppoints(x,a) , with a=0 for the Weibull,
resp. a=1/2 for the Hazen plotting position)

3. Transforming each observation x(i ) of X into observation y(i ) = Q−1(p(i ))
(y=qnorm(p) ) of the standard normal variate Y , with Q denoting the stan-
dard normal distribution and Q−1 its inverse, applying discrete mapping15

(f=approx(x,y) )

The first two steps (qnorm(ppoints(x)) ) are integrated in the command
qqnorm(x) .

The problems of applying the NQT arise for the reverse process, when the sam-
pled data points in the normal space fall outside the range of historical samples (i.e.20

probability quantiles greater than n/(n+1)). In order to be able to extrapolate to ex-
treme values, which are rarely observed in the historical samples due to the limited
amount of available data, different parametric and non-parametric approaches have
been tested in this paper. The problem of a sufficient amount of data is naturally very
common for example in flood frequency estimation (Laio et al., 2009), downscaling25

of climate change scenarios for hydrological applications (Bo et al., 2007; Vrac and
Naveau, 2007, 2008), and hydrology in general (Zhu, 1987; Engeland et al., 2004).
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This paper will specifically concentrate on the impact of small sample sizes in real-time
flood forecasting using ensemble driven systems in combination with the HUP.

In the next section a forecast example of the European Flood Alert System (EFAS)
is shown in order to demonstrate the problem of the back-transformation and its impact
on the predictive uncertainty. Then several different solutions are given and some ad-5

vantages and disadvantages outlined. Finally some concluding remarks and practical
advice is given.

2 Example forecast

The EFAS (Thielen et al., 2009; Bartholmes et al., 2009) produces daily stream-flow
forecasts and includes post-processing through data assimilation and error correction10

at selected runoff gauging stations.
Since 2010 ensembles of stream-flow forecasts issued daily are corrected and pre-

dictive uncertainties are estimated at some stations, for which historical time-series of
simulations and observations are available as well as observations in real-time (see
for details Bogner and Pappenberger, 2011). In Table 1 characteristic values from two15

selected stations are given, Bohumin (Odra river, CZ) and Hofkirchen (Danube, DE),
which will be analysed in more detail. For the calibration of the post-processor, time
series of daily observed and simulated stream-flow data are necessary, which can be
quite different in length and occurrences of floods at the various stations investigated.
For example the data at station Bohumin comprises six years only with a maximum ob-20

served discharge of less than 600 m3 s−1, which corresponds roughly to a flood event
with a return period between two and five years, whereas at Hofkirchen eight years of
data are available including some severe flood events with twenty to fifty years return
periods (see Fig. 1). In 2010 during the testing period for the EFAS postprocessor,
the forecasted discharge at Bohumin far exceeded the maximum of the historical data25

sample, and this led to the initiation of this study. Consequently we present the case
of Bohumin here. At station Hofkirchen the effect of sample size on the extrapolation
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methods will be analysed in more detail by comparing the results of the total available
and a split sample (divided into two halves).

The post-processor runs operationally twice a day and includes the minimization of
the error between the most recent past observed and simulated discharge values and
the correction of the deterministic ten days ahead forecasts and the corresponding5

forecasts derived from two different Ensemble Prediction Systems (EPS). The NQT is
applied prior to the post-processing to all available stream-flow data (measured, sim-
ulated and predicted) and the results of the error corrected forecasts are transformed
back from normal space into the real world and the predictive uncertainty is estimated.
In Fig. 2 the final output of the post-processor is shown with forecast initiation at time-10

step zero (dashed vertical line). The past eight days (−8,···,−1) are included to demon-
strate the performance of the error correction showing the corrected one step ahead
predictions, the observations and the prediction uncertainties estimated by the HUP
(Krzysztofowicz and Kelly, 2000). From lead-time one onwards (1,···,10) the error cor-
rected forecasts are shown including two stream-flow forecasts based on deterministic15

weather forecast systems (DWD, ECMWF-det.) and two ensemble prediction systems
(51 members EPS from ECMWF and 16 members COSMO-LEPS). The resulting total
predictive uncertainty integrating the model input uncertainty (i.e the weather forecast
uncertainty) and the hydrological uncertainty is calculated for the different lead-times
and is shown as shaded areas. Additionally two thresholds are indicated, the MQ20

value (lower horizontal line) representing the mean daily average discharge and the
MHQ (upper horizontal line) representing the daily mean annual maximum discharge.

In Fig. 2a,d the problem of back-transforming data values exceeding the maximum of
the historical sample used for calibration is demonstrated. For the observations corre-
sponding to the one step ahead predictions, the NQT has been applied and the back-25

transformed measurements can show discrepancies to the real observations, because
of the upper limit (observed maximum) in the historical data set. That is the reason
why the observed values in Fig. 2a at time-step zero (forecast initiation) and leadtime
one do not match the real observed data, but correspond to the historical observed
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maximum. This limitation clearly indicates the necessity for including methods for ex-
trapolation. It should be noted that this problem of extrapolation will only occur in the
case of applying empirical NQT’s, that means transforming empirical CDF’s, and could
be circumvented by fitting a theoretical CDF to the historical data sets. However the
fitting of theoretical distribution functions is quite difficult under non stationary condi-5

tions and for data sets showing long-range dependencies, what is typically the case for
hydrological time-series. Additionally for different regions probably different distribution
functions will be optimal, which would make a supervised fitting and detailed verifica-
tion at each single station (i.e. stream-flow pixel in spatially distributed models) nearly
impossible, especially for continental scale forecast systems such as EFAS which runs10

on a 5 km grid over the whole of Europe.

3 Extrapolation methods

In this paper we concentrate on two approaches which represent a large class of pos-
sibilities and allow us to evaluate them in a flood forecasting specific setting:

(1) The first method is based on extreme value theory and tries to estimate future15

possible extreme stream-flow values by fitting a theoretical distribution to the upper
(and lower) tail of the sample. The resulting extreme values are combined with the
historical sample in order to find an optimal transform function. There are multiple
approaches which could be used for extrapolation based on extreme value theory,
for example: normal and log-normal distributions and 3-parameter log-normal; Log-20

Pearson Type III; Extreme Value type I, II, or III; Generalized Extreme Value (GEV);
Logistic and General logistic; Goodrich/Weibull distribution; Exponential distribution;
or Generalized Pareto Distribution (GPD) – to name a few. More mathematical and
statistical details concerning extreme value theory can be found for example in Coles
(2001); Finkenstädt and Rootzén (2004).25

(2) In contrast to this approach the second is a non-parametric regression method
called Generalized Additive Model (GAM, Hastie and Tibshirani, 1986), where the
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regression (i.e. transformation) function is estimated directly without specifying its para-
metric form explicitly. GAMs are Generalized Linear Models (GLMs, McCullagh and
Nelder, 1989) in which the linear predictor is specified partly in terms of a sum of
smooth functions of covariates and have been introduced for modelling non-linear rela-
tionships (Hastie and Tibshirani, 1990; Wood, 2000, 2006). Generalized additive mixed5

models have been proposed for over-dispersed and correlated data, which arise fre-
quently in hydrology (Lin and Zhang, 1999) and that gave the reason also for choosing
the GAM in this study. Many more different non-linear (regression) models exist, such
as neural networks, non-linear prediction methods (e.g. Laio et al., 2003) and kernel
based support vector machines (e.g. Yu et al., 2006), but their application is beyond10

the scope of this technical note. In Fig. 3 some non-linear relationships between the
standardized normal observations and the observations are shown demonstrating the
appropriateness of GAMs in fitting this non-linear transformation function.

3.1 Extreme values

The application of extreme value theory in hydrology has a long tradition and an as-15

sociated large literature. Fisher and Tippett (1928) started to work on the asymptotic
theory of extremes, whereas in Gnedenko and Kolmogorov (1949/68) the theory for
independent identically distributed random variables was completed. Fitting methods
of extreme value type distributions to reliability data are outlined thoroughly in the fa-
mous work of Gumbel (1958). The Gumbel distribution is frequently applied, which20

is a double exponential distribution representing the limiting distribution for Gaussian
data. Recently the GEV for annual maxima series (e.g. Ailliot et al., 2011) and the
GPD for maxima exceeding thresholds have found the most attraction in environmental
extreme value analysis (e.g. MacKay et al., 2011; Moloney and Davidsen, 2011; Mazas
and Hamm, 2011).25

For the practical implementation in R several packages are available, like ismev,
evir and POT (Ribatet, 2006), which has been used in this study. In the Peaks
Over Threshold (POT) model the limiting distribution of normalised excesses over
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a threshold converges to the GPD, as the threshold approaches the endpoint
(Pickands, 1975; Davison and Smith, 1990).

In the POTpackage different fitting methods are implemented ranging from meth-
ods of moments, unbiased probability weighted moments to maximum likelihood (mle ,
Ashkar and Tatsambon, 2007) and maximum goodness-of-fit (mgf , Luceño, 2006) es-5

timators. Although Hosking and Wallis (1987) recommended the method of probabil-
ity weighted moments for small sample sizes, the following two-step approach has
been applied here. At first the GPD parameter were estimated by minimizing the
Kolmogorov–Smirnov (KS) goodness-of-fit statistics, which were taken in step two
as initial values for optimizing the maximum likelihood function by the use of the10

Nelder--Mead method (Nelder and Mead, 1965) resulting in stable parameter es-
timates and good agreements between the fitted and the empirical maxima (Fig. 4).
The disadvantage of the POT model is the somewhat subjective choice of a threshold
u and the necessity to de-cluster the possible serial correlated time-series by defin-
ing some criterion for making the observed events independent (i.e. defining the mini-15

mum timespan between two consecutive events not exceeding the threshold, see also
Bogner et al., 2011, for more details). In the following example of R commands the ob-
served data series x is de-clustered first by defining a timespan of eight days to ensure
independence of events (see also Fig. 1).

20
require (POT)
events ← c l u s t ( x , u=u , t im . cond=8 / 365)
mgf . f i t ← f i t g p d ( events , th resh=u , es t=” mgf ” , stat=”KS” )
mle . f i t ← f i t g p d ( events , th resh=u , es t=” mle ” , method=” Nelder−Mead” ,
control= l i s t ( s ta r t= l i s t ( scale=mgf . f i t $para [ 1 ] , shape=mgf . f i t $para [ 2 ] ) )25

3.2 Nonparametric regression

One remarkable property of the GAM is it’s flexibility permitting the data to influence the
shape of the smooth functions used for exploring the relationship between the trans-
formed variable (response) and the observation (explanatory variable). In allowing user30
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defined penalization in the fitting by the use of natural splines it is possible to extrap-
olate to extreme values, without creating some unrealistic artefacts, like arbitrary and
impossible swings, resulting for example from curve fitting methods based on higher
degree polynomials. Natural cubic splines, which are constructed of piecewise third-
order polynomials with continuity conditions expressed until second derivatives (Hastie5

and Tibshirani, 1990), are constrained to be linear outside the range of the data, and
therefore provide a useful tool for extrapolation purposes. Note that requiring linear-
ity outside the range of the data imposes additional smoothness constraints inside
the range. Within the R package mgcv (Wood, 2006) recent developments of GAMs
have been implemented, which have been applied in this study also utilizing the follow-10

ing command: gam(y ˜ s(x, bs="cr", k=10)) . In this gam function the smooth
term of the observations x is specified by s . By setting the term bs="cr", k=10
the penalized cubic regression spline will be applied with the dimension k of the basis,
used to represent the smooth term, and which sets the upper limit on the degrees of
freedom.15

4 Results

In order to evaluate the dependence of the NQT on the sample size and its effect
on the predictive uncertainty based on the meta Gaussian distribution, two different
cases have been analysed with respect to (a) extreme values (b) GAM based and (c)
combined extreme values plus GAM based extrapolation. The two different cases are:20

1. Small sample size (six years) at station Bohumin including no severe flood events

2. Sample at station Hofkirchen

– covering eight years (i.e. the complete data set available, including severe
events)
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– after elimination of the first half of the data set (reduced time series excluding
most of the severe events, which are concentrated in the first half of the
observed data set)

– after elimination of the second half of the data set (most of the severe events
remain included)5

4.1 Station Bohumin – 6 yr

The available data set at station Bohumin has been very limited and the sample in-
cludes almost no severe events. Therefore the flood event in May 2010 is well suited
for testing extrapolation methods in view of the NQT and deriving rules for application.
In the historical data set the observed maximum was about 600 m3 s−1, whereas in10

May 2010 the stream-flow values reached a maximum of approximately 1000 m3 s−1,
which corresponds to a flood event with a return period of approximately twenty years
(information provided by the Czech Hydrometeorological Institute, CHMI). Starting from
the situation shown in Fig. 2a the historical data set has first been extended including
extreme values derived from the POT model. The non-linear transformation function is15

shown in Fig. 3a with the extended sample including extreme values shown as green
dots. Applying to this “statistically” extended data set the NQT, the post-processor will
result in the corrected forecast including the predictive uncertainty as shown in Fig. 5a.
Comparing the predictive uncertainty estimated by the GAM based inter- and extrap-
olation of the non-linear back-transformation function of the NQT (Fig. 5b) with the20

enormous range of uncertainty in the forecast of the extreme value extended sample
the drawback of this method becomes quite obvious. Although this huge uncertainty
range corresponds quite well with the large uncertainty range of the extreme values es-
timated by the POT method (Fig. 4a), from the decision maker’s point of view the worth
of the outcome of such an uncertainty band becomes questionable and will probably25

not be accepted from the end-users of flood forecast system. From the comparison of
the three different approaches in Fig. 5 one can see that the GAM based uncertainty
range is by far smaller than the ranges derived from methods including extreme values,
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which could lead to an unrealistic impression of sharpness of the forecast system, i.e.
not explaining all possible sources of uncertainty intrinsic to the flood forecasts. The
last method of extrapolation is the combination of (a) extending the sample by extreme
values estimated by the POT model and (b) GAM fit and extrapolation of this extended
sample. In Fig. 5c the result of this method labelled “GAM+POT” is shown. The ad-5

vantage of this method is the smooth transition between observed and extrapolated ex-
treme values as opposed to the result of extending the sample size with extreme values
only without applying GAM, which could result in sharp jumps in uncertainty as soon
as the estimated values exceed the historical observed maximum value. In Fig. 5a this
drastic discontinuity occurs at time-step zero (at forecast initiation), where the inner-10

most quantile range (corresponding to the uncertainty range between 0.45 and 0.55
and shown by the darkest shaded area) covers a range of more than 500 m3 s−1. Fur-
thermore it can be seen how a slight difference in the stream-flow value in the normal
space can cause a big difference in the real world after back-transformation, like the
differences in the DWD deterministic forecast (based on weather forecasts provided by15

the German Weather Service) ranging from 1000 m3 s−1 in Fig. 5a,b to 1300 m3 s−1 in
Fig. 5c. However in Fig. 5c it can be seen that the inner quantile ranges (0.35–0.65)
cover all the observations in the forecast period (from leadtime 1 to 10) and the pre-
dicted median follows quite well the observations, whereas the first two methods result
in under or over predictions from a leadtime of three days onwards.20

4.2 Station Hofkirchen

The historical data sample at station Hofkirchen comprises eight years and includes
several quite severe flood events such as those in May 1999, spring 2002 and August
2002, which correspond to flood events with return periods between 10 and 20 yr (in-
formation provided by the Bavarian Environmental Agency). Given this representative25

data set several tests have been conducted analysing the NQT performance and its
dependence on sample size and on the extrapolation method. Since the majority of
the flood events occurred in the first half of the sample (between 1998 and 2003) the
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NQT and the post-processor have been applied on the total sample and on the split
(halved) sample (Fig. 2b–d). Taking the total data set of eight years for calibrating the
post-processor result in a forecast with a predictive uncertainty covering almost all the
observations, although the first peak of this double-peaked event is overestimated and
the second one, the more severe peak, is underestimated (Fig. 2b). Nonetheless the5

observed values of the second peak fall within the upper quantile range (0.05–0.95)
at a leadtime of eight days, which is quite good for a medium range forecast. Fitting
the post-processor to the first half of the sample size (Fig. 2c) leads to an increased
uncertainty because of the greater variability of the sample. In comparison to this
the calibration based on the second half sample result in to a forecast with smaller10

uncertainty bands because of the smaller variance of the sample, demonstrating the
importance of sample size and explaining the upper limit of applicability of the NQT,
when the observations exceed the historical sample (Fig. 2d).

In the case of the eight years data set, the artificial extension and/or the application of
the GAM approach only resulted in modest changes in the forecast and consequently15

these results are not shown here. However taking only the first half of the sample with
several severe events results in an extreme value distribution producing too heavy tails
and therefore heavily overshooting predictive uncertainty ranges in the forecast exam-
ple (Fig. 6a). The inclusion of extreme values fitted to the second half sample results
in back-transformed forecast values which substantially exceed the observations be-20

cause of the discontinuity between the historical data set and the estimated extreme
values. Such discontinuities will result in unrealistic, abrupt changes as can be seen
in Fig. 6b at leadtime three and can be circumvented by the application of the GAM in
combination with the POT model, which will result in smooth forecasts (Fig. 6c).

5 Conclusions25

In this study of the applicability of the NQT in flood forecasting systems different prob-
lems arising from the small sample sizes are discussed. The chosen forecast examples
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at two different stream-flow gauging stations and for two different flood events demon-
strate the problems of extending the historical data set by extreme values result-
ing from the fitted POT model. Because of the discontinuity between the observed
historical sample and the estimated extreme values, sharp and unrealistic rises (or
falls) in the hydrograph can occur after transforming the forecast from the Gaus-5

sian to the “real world” space. The analysed GAM for approximating the non-linear
(back)transformation function could be an alternative, but the problem of possibly un-
realistic small predictive uncertainty ranges has to be investigated in more detail with
longer time-series and at different stations. However for these very limited data sets
analysed the suggested way would be the combination of the extension of the small10

samples by extreme values and the inter- and extrapolation of this prolonged data
set by the GAM, which results in smooth forecast hydrographs and not too optimistic
under-dispersive predictive uncertainty ranges.
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Table 1. River Gauging station information for Bohumin and Hofkirchen including stream-flow
characteristic value MQ (mean discharge) and MHQ (average yearly mean discharge).

Station River Area Channel gradient MQ MHQ Latitude Longitude
(km2) (m m−1) (m3 s−1) (m3 s−1) (◦) (◦)

Bohumin Oder 4350 0.008 40 350 49.92 18.33
Hofkirchen Danube 48 000 0.005 640 1870 48.68 13.11
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Fig. 1. Observed stream-flow and number of clusters exceeding a threshold at station (a) Bo-
humin (Odra, CZ) and (b) Hofkirchen (Danube, DE) with 6, resp. 8 yr of daily observations.
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Fig. 2. Corrected forecast of a flood event in May 2010 at station Bohumin (a), and in January
2011 at Hofkirchen (b–d) without extrapolation. At station Bohumin (a) and in the second
reduced sample at station Hofkirchen (d) the upper limit of applicability is shown, when the
maximum of the historical sample is exceeded during the forecast period.

9293

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9275/2011/hessd-8-9275-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9275/2011/hessd-8-9275-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9275–9297, 2011

Application of the
NQT

K. Bogner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 500 1000 1500 2000 2500 3000

−5
0

5

Streamflow x[m3/s]

St
d.

 N
or

m
al

 O
bs

er
va

tio
n 

y

empirical
emp. + POT
GAM
POT + GAM
extrap. GAM
extrap. POT

100 200 300 400 500 600

1.
0

1.
5

2.
0

2.
5

3.
0

Streamflow x[m3/s]

St
d.

 N
or

m
al

 O
bs

er
va

tio
n 

y

(a) Bohumin

0 1000 2000 3000 4000 5000

−6
−4

−2
0

2
4

6

Streamflow x[m3/s]

St
d.

 N
or

m
al

 O
bs

er
va

tio
n 

y

empirical
emp. + POT
GAM
POT + GAM
extrap. GAM
extrap. POT

1000 1500 2000 2500 3000

0
1

2
3

4

Streamflow x[m3/s]

St
d.

 N
or

m
al

 O
bs

er
va

tio
n 

y

(b) Hofkirchen 8 years

Fig. 3. Normalization of stream-flow values X at station Bohumin (a) and at Hofkirchen –
8 yr (b). The range of observations with and without including extreme values (labelled as
“emp.+POT”, resp. “empirical”) has been extrapolated applying GAMs.
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Fig. 4. Resulting QQ plot for the fitted extreme value distribution (POT Model) versus empirical
extreme values including the 95 % confidence interval in gray for Bohumin (a) and Hofkirchen
– 8 yr (b).
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Fig. 5. Resulting forecast at station Bohumin applying three different methods of extrapolation.
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Fig. 6. Corrected forecast at station Hofkirchen including extreme values for extrapolation
based on (a) four years of the first half, including several severe events and (b) four years of
the second half (less severe events) and (c) four years of the second half sample combining
the GAM and the POT model for extrapolation.
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